Search Technical Articles:
Home
About007
Exhibitions
Product Categories
Advertising
Search Help
Feedback
  Welcome to our website!
Welcome! Now:  
Other Technical Articles
· Multi-Layer Injection Molded Tubs
( 2011-09-01 )
· Microcellular Foam Molds 'Impossible' Parts
( 2011-08-19 )
· Reasons Why Non-Return Valves Leak
( 2011-08-05 )
· Nylon Compound Aims Metal in Cars
( 2011-07-21 )
· Nanolayers Come to Tubing
( 2011-07-05 )
· A Legacy Built on Automation
( 2011-06-21 )
· New Hydraulic Press Saves Energy by up to 40%
( 2011-06-15 )
· How to Manage Multiple Heads
( 2011-06-08 )
· How to Choose the Right Pelletizer
( 2011-05-27 )
· Things to Look for in a Conveyor System
( 2011-05-18 )
· Making a Part for the First Time?
( 2011-04-27 )
· Create a Maintenance Work (Bench) Cell
( 2011-04-18 )
· Pay Attention to Your Nozzle Body & Tip
( 2011-04-08 )
· How to Set Second-Stage Pressure
( 2011-03-29 )
· Electric Machines Starting to buzz
( 2011-03-21 )
· Five-Layer Film Structures Set to Supplant Three Layers?
( 2011-03-10 )
· Downgauge Film While Sustaining Quality
( 2011-02-16 )
· Geothermal Cooling Works in Molding, Too
( 2011-02-11 )
· The Function of Extrusion Equipment and Energy Control During...
( 2009-02-20 )
· New extruder twin-screw feeder design
( 2009-02-18 )
 
Technical Articles
 
Home >> Technical Articles >>Gain Insight to New Twin Screw Extruder Applications
Gain Insight to New Twin Screw Extruder Applications
Time: 2009-01-08
 
By: Babu Padmanabhan
 
When there are hundreds of different types and varieties of polymers, why use an additional process called Compounding? The answer is very simple. Most of us begin our day by using a compounded product. The making of bread dough is a classic case of everyday use of compounded wheat flour. Actually, this operation can very well be done using a Twin-screw Extruder, because, the fundamental process of compounding is the same.
 
Compounding is used to make "new" plastics in modern times, because - a vast variety of plastic-material(s) is required to 'satisfy' a wide-range of 'applications' and also 'endusers'. Also, to discover and manufacture a new molecule to fit each one of these applications is a phenomenally expensive proposition. Compounding offers a quick, easy, low-cost alternative to discover new molecules. That is the reason why compounding has become such a popular process to modify properties of the base polymer. Actually, some of the very interesting polymers would have never become commercial success, if they were not compounded. PVC, for one, is a well-known example. Noryl (PPO blends from GE Plastics) is another. In fact, until a few years ago, most polymers were compounded immediately upon synthesis because they would not survive without additives and stabilizers for more than several hours unless elaborate measures were taken to protect them from air (oxygen), light and heat. Polypropylene is an example. There are new processes and technology, which incorporate these additives in the final stages of the reaction, thereby eliminating the compounding process, which was so critical for the polymer's survival.
 
Process of Compounding - The 3 M's
 
The process of compounding actually consists of several different unit operations happening inside the extruder. We would discuss each one of these in detail, but the basic process can be defined with the Three M s' - Melt, Mix, Meter. The difference between normal extrusion and compounding extrusion is that in the latter, there is special emphasis on Mixing whereas in the former, emphasis is on Melting and Metering. (See figure 1). In "normal" extrusion, either the mixing section is absent or if present, it is quite insignificant. This also suggests that compounding extruders, by virtue of the extra mixing section, tend to have a higher L/D as compared to normal extruders.
 
The 5-Step Process
 
In practice, there is much more to compounding than just the three 'M' processes. Actually, it is at least a five-step process, namely, Feeding, Melting, Mixing, Venting and Metering. More often than not, it becomes a six-step process too, when there is an additional feeding operation - downstream of the melt section, especially when using glass fibers. The importance of "process" occurring in Feeding or Venting is a subject for debate - one just feeds the stuff at the feeding port or applies vacuum at the vent port. In reality, things are not so simple - indeed, the entire process of compounding seems to be deceptively simple.
Modern Twin-screw Extruders are STARVE-FED devices. Which means that you may NEVER fill-up the feed hopper and control the output just by setting the Screw RPM. When run with full hoppers, a modern co-rotating, parallel, fully intermeshing twin-screw extruder will surely be overloaded (few exceptions, though). In practice, these extruders run with their flights 100% full only in specified areas of the extruder. Theoretically, "higher the percentage of filling of flights, better it is for the material that is being compounded".
 
About the Author:
Dr. Babu Padmanabhan, Managing Director and Founder of Steer Engineering. He is a PHD in Mechanical Engineering from Virginia Polytechnic Institute and State University Blacksburg VA
 
Browse Alphabetically :blow molding machine
Copyright © 2008 extrusion-machinery007.com All rights reserved.